Farzin Farzaneh
King’s College London, UK
Title: Development of therapeutic vaccines against cancer associated antigens
Biography
Biography: Farzin Farzaneh
Abstract
Autologous chimeric antigen receptor (CAR) T cells, one of the most effective of the new immune therapy strategies, are extremely expensive, as they are made for each patient individually. Deletion of the endogenous T cell receptor allows the use of allogeneic CAR T cells, which if proven to be safe and effective, will be substantially cheaper and suitable for large populations of patients. We have helped with the development of allogeneic CAR T cells, now in a number of phase-I clinical trials, providing preliminary evidence of safety and efficacy. In an entirely different form of immune gene therapy, we have shown that myeloid leukaemia cells expressing immune co-stimulatory molecules and appropriate cytokines can induce the rejection of previously established cancers in several mouse models. In two phase-I clinical trials, in poor prognosis acute myeloid leukaemia (AML) patients, we are now assessing the safety and potential efficacy of autologous CD80/IL-2 expressing AML cells. Preliminary data shows evidence of vaccination induced antigen specific cellular immunity and clinical efficacy. In order to develop therapeutic cancer vaccinations, we have identified combinations of adjuvants for synergistic activation of cytotoxicity (CASAC) that can induce antigen-specific cellular immunity, even in immune senescent aged mice. Using a simpler version of CASAC in combination with a selected library of hTERT peptides, we are completing a phase-I trial in patients with therapy resistant, progressive, metastatic disease. Early results indicate safety and stimulation of immunological responses, as well as objective clinical responses and disease stasis in up to 40% of patients.