Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Nahal Shamaeizadeh

Nahal Shamaeizadeh

pharmacy faculty of Isfahan University of Medical Sciences, Iran

Title: Effective Therapeutic Strategy in Neurological Disease

Biography

Biography: Nahal Shamaeizadeh

Abstract

Although there are many treatments for neurological disease, but they are not always curative and there are still intriguing aspects about effectiveness, mechanisms and safety. MicroRNA, a small non-coding RNA, regulates mRNA by direct binding through the 3′- untranslated region (3′UTR). These molecules are vital regulators in the nervous system. MicroRNAs play crucial roles in differentiation of oligodendrocyte progenitor cells, promoting oligodendrocytes maturation and remyelination and cognitive function so it can be a potential therapeutic option for demyelinating disease such as multiple sclerosis. Moreover, treating with antagonists of NMDA receptors reveal the undeniable role of microRNAs in schizophrenia. Additionally, miRNAs are clock regulators and modulate the length of the circadian-clock period. This leads to mood instability, which is implicated in the fluctuation of phases in bipolar patients. These molecules modulate tau toxicity in Alzheimer’s disease by decrease tau mRNA and downregulate synthesis of three tau kinases which leads to inhibition of abnormal hyper phosphorylation of tau. These small regulators have also protection effect against seizure through negatively regulation brain receptors. Furthermore, the studies demonstrated there is a correlation between Parkinson’s disease and miRNA down regulation. Some more studies proved overexpression of spinal miRNAs prevent and reverse chronic inflammation pain. On the other hand, Brain-enriched microRNAs can inhibit proliferation, suppress invasion, and induce apoptosis in tumor’s cell. In this review, we compare and summarize the microRNA therapeutic effects and mechanisms on the central nervous system disorders and illustrate how this information will change the future of gene therapy.