Bioinformatics in Cell and Gene Therapy

Bioinformatics plays a crucial role in the development and optimization of cell and gene therapies. By leveraging computational tools and techniques, researchers can analyze and interpret large datasets, enhance the precision of genetic modifications, and improve the overall efficacy and safety of therapies. Bioinformatics tools are used to predict and minimize off-target effects in CRISPR-Cas9 and other gene-editing technologies. Algorithms can design guide RNAs with high specificity to target genes, reducing unintended modifications. Computational models help design and optimize viral and non-viral vectors for efficient gene delivery. This includes identifying optimal promoter regions, enhancers, and other regulatory elements to ensure high levels of gene expression. Bioinformatics pipelines process and analyze WGS data to identify genetic mutations and variations. This information is crucial for developing personalized gene therapies tailored to an individual’s genetic makeup. RNA sequencing (RNA-seq) data is analyzed to understand gene expression patterns in different cell types and conditions. 

    Bioinformatics in Cell and Gene Therapy Conference Speakers

      Recommended Sessions

      Related Journals

      Are you interested in